## "Beyond Perceivability": Critical Requirements for Universal Design of Information

#### Takashi Kato & Masahiro Hori

Faculty of Informatics, Kansai University

{tkato, horim}@res.kutc.kansai-u.ac.jp

# "Beyond Perceivability"

- Information may be judged to be accessible when it appears to be easily perceivable by the user
- However, its content should not be judged to be accessed unless it is understood by the user
- Accessibility of information should be evaluated
  - not only for its percievability
  - but also for its understandability

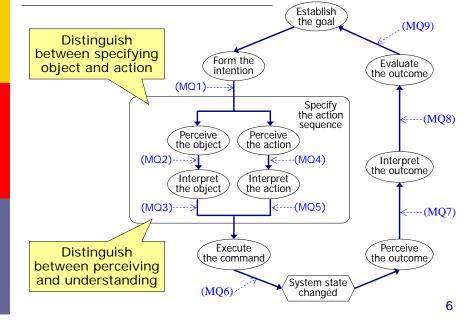
2

# The Cognitive Walkthrough (CW) Method

- A usability inspection method
  - Aimed at evaluating the ease of learning user interfaces
- Analysts are asked to answer questions as to whether the user will successfully perform the required action
  - Yes/No answers and their reasons
- In the current 3rd version (CW3)
  - The number of questions was reduced to 4 (Wharton et al., 1994)

## Four Questions in CW3

- Q1) Will the user be trying to achieve the right effect?
- Q2) Will the use know that the correct action is available?
- Q3) Will the user know that the correct action will achieve the desired effect?
- Q4) If the correct action is taken, will the user see that things are going OK?


## The Modified CW (MCW) Method

#### Approaches

- Clarify the intent of CW questions using HCI model
- Determine CW questions of optimal grain levels based on HCI model
- Extended HCI model
  - The Seven Stages of Action model (Norman, 1986) was extended
  - Distinguish between
    - specifying "object" and "action"
    - "perceiving" and "understanding"

5

#### Extended HCI Model



## New Set of Questions in MCW

| (MQ1) | Will the user intend to achieve the right effect?                                                   |
|-------|-----------------------------------------------------------------------------------------------------|
| (MQ2) | Will the user notice that the correct object is available?                                          |
| (MQ3) | Will the user know what the correct object refers to?                                               |
| (MQ4) | Will the user notice that the correct action is available?                                          |
| (MQ5) | Will the user know that the correct action should be applied to the correct object?                 |
| (MQ6) | Will the user be able to apply the correct action to the correct object without fail or difficulty? |
| (MQ7) | When the correct action is taken, will the user notice the physical change in the system state?     |
| (MQ8) | Will the user know what exactly has happened to the system state?                                   |
| (MQ9) | Will the user know the current system state is nearer to the completion of the task?                |
|       |                                                                                                     |

#### **Comparative Evaluation: Objective**

- Compare the third version (CW3) and the modified version (MCW)
  - In terms of effectiveness and efficiency in identifying Web design problems
- Effectiveness
  - Measured by the proportions of problems identified by the participants
- Efficiency
  - Indexed by the time spent by the participants for answering the CW questions

## Method

- 48 undergraduates without prior experience of using the CW methods
  - Randomly divided into two groups of 24 participants each
  - One group for CW3, and the other for MCW
- Participants in each group were asked to inspect possible problems in two fictitious Web sites
  - Online shopping site and university web site
  - The order of inspecting these two Web sites was counterbalanced across participants within each group

## **Results: Effectiveness**

- Proportions of correct data was analyzed by a two-way ANOVA
  - 2 (CW3 vs. MCW) x 2 (types of Web sites)
- □ The main effect of the methods was significant (*F*(1,46)=10.39, *p*<.005)
- MCW had a higher mean (.58) than CW3 (.42)

#### 9

### **Results: Efficiency**

- Task completion time was analyzed by the same two-way ANOVA
- When all the 9 questions were included for the MCW, the MCW [2140 sec.] took significantly longer than the CW3 [1709 sec.] (F(1,46)=7.77, p<.01)</p>
- MQ4 & MQ5 were about well-learned actions (e.g., mouse click)
- When MQ4 & MQ5 were excluded from the MCW, there was no significance difference between MCW [1748 sec.] and CW3 [1709 sec.] (F<1)</li>

#### Conclusions

- The MCW was more effective than the CW3 in identifying possible Web design problems
- The MCW was comparable with the CW3 in the task completion time, when the trouble-free questions (i.e., MQ4, MQ5) were removed from the MCW
  - "Trouble-freeness" depends on the intended user group
- The finer-grained questions in the MCW allow effective and flexible evaluation of accessibility and usability
  - Design problems are more easily revealed by the explicit distinctions of identifying correct objects/actions and of perceiving/understanding
  - The question set may be customized by removing noninformative questions that will never be answered "No" with respect to the intended user group

10