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HARMONY PERCEPTION: HARMONIOUSNESS IS MORE THAN
THE SUM OF INTERVAL CONSONANCE

NORMAN D. Cook
Kansai University, Takatsuki, Osaka, Japan

ATTEMPTS TO EXPLAIN HARMONY PERCEPTION SINCE
Helmbholtz (1877/1954) have relied primarily on psy-
choacoustical models of the dissonance among the par-
tials of chord tones. Those models are successful in
explaining interval perception and the interval struc-
ture of common scales, but do not account for even the
basics of triadic harmony. By introducing a 3-tone “ten-
sion” factor, I show how the sonority of the triads of dia-
tonic music can be explained. Moreover, the relative size
of the intervals among the partials in triads determines
the major/minor modality of chords: major chords have
a predominance of larger lower intervals, while minor
chords have a predominance of smaller lower intervals.
Finally, by invoking the “frequency code” known from
linguistics and ethology, the positive/negative valence of
the major/minor chords is shown to have an acoustical
basis. I conclude that the perception of harmony can be
explained by the acoustical structure of triads, without
invoking cultural factors.
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dissonance
I triads (played either simultaneously as chords or
sequentially as melodies) differs widely among
various musical cultures, but the empirical facts con-
cerning their common perception are well-established
both from laboratory experiments and from statistics
on their prevalence in Western classical and popular
music. Among the triads, major and minor chords are
perceived as relatively “pleasant,” “consonant” and
“beautiful,” and they totally dominate most forms of
popular music, globally. Other triads are of course
employed, but most often in support of and in transi-
tion to major or minor key resolution.
Although the psychoacoustics underlying the percep-
tion of interval dyads is relatively well-understood,

HE USAGE OF BOTH PITCH INTERVALS AND pitch

there is a notable absence of quantitative hypotheses
that explain why the triads are perceived as they are or
why the laws of traditional harmony theory work so
well. Here, I show that straightforward considerations
of the acoustical properties of chords can explain many
of the outstanding questions about diatonic music
(“diatonic” meaning the major and minor scales of
Western music and the harmonic phenomena implied
by those scales), provided that 3-tone configurations
are brought into the picture.

As already understood by Helmbholtz (1877/1954)
and his contemporaries, the science of musical pitch
begins with the wave structure of tones (e.g., Cook,
1999; Pierce, 1992). Because of the presence of upper
partials (overtones or higher harmonics), chords, inter-
vals and even isolated tones are phenomena of some
acoustical complexity. This one technical detail about
the upper partials is often unfamiliar to music listeners,
but an understanding of the partial structure of tones
adds a dimension that ultimately leads to a deeper
appreciation of the phenomena of harmony. The cru-
cial point is simply that what is heard as a “single tone”
actually consists of a fundamental frequency (FO,
defined in terms of cycles per second, or Hertz) and
higher harmonic components (F1, F2, F3 and so on,
described as sine waves that are integral multiples of the
FO, with the partials usually having gradually weaker
amplitudes). Eventually, the upper partials become so
weak that they can be ignored, but discussions of musi-
cal tones usually consider the first 4-5 partials. Most
musical sounds in the real world are composed of a set
of these partials, which together determine their musi-
cal timbre.

Previous psychoacoustical work has considered the
effects of upper partials, but has focused narrowly on
interval dissonance, i.e., the relative separation of par-
tial dyads. Such “sensory dissonance” is normally dis-
tinguished from other kinds of unsettled, “musically
dissonant” pitch effects that are presumably due to fac-
tors other than the raw acoustical signal. Although the
dissonance models have been largely successful in
explaining the perception of intervals themselves and
in providing a coherent, acoustical basis for under-
standing the interval structure of the diatonic scales
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TABLE 1. Empirical Data and Theoretical Predictions on the Rank Ordering of the Sonority of the Common Triads.

Empirical Theoretical Sonority Present
Sonority Based on Interval Consonance Model
Chord  Interval  Roberts  Eberlein CFK Helmholtz P&L K&K Parncutt  Sethares C&F
Class Structure (1986) (1994) (2007)  (1877/1954)  (1965)  (1969) (1989) (1999) (2006)
4-3 1 1 1 3 4 1 1 4 1
Major 3-5 3 3 4 9 11 11 6 8 5
5-4 2 7 2 1 2 6 3 2 4
3-4 4 2 3 3 4 1 4 4 2
Minor 4-5 6 4 5 1 2 6 6 2 3
5-3 5 6 6 9 11 11 10 8 6
3-3 7 9 7 13 13 6 9 12 12
Dim 3-6 8 5 12 11 8 9 5 10 7
6-3 9 10 10 11 8 9 8 10 10
Aug 4-4 10 11 13 5 10 13 2 12 13
52, — 8 9 5 6 1 = 6 8
Sus4 2-5 = 11 8 5 6 1 = 6 11
5-5 — 11 11 8 1 1 — 1 9

Note: CFK: Cook, Fujisawa, & Konaka, 2007; C&F: Cook & Fujisawa, 2006; K&K: Kameoka & Kuriyagawa, 1969; P&L: Plomp & Levelt, 1965.

(and their pentatonic subsets), the successes of the dis-
sonance models do not generalize even to the triads.
This fact can be seen in Table 1, which summarizes the
total consonance (“sonority”) of the most common
triads, as calculated from various well-known disso-
nance models.

Table 1 also shows two types of empirical evidence.
The first is from laboratory experiments (Roberts,
1986) in which musicians and nonmusicians evaluated
the “consonance” of the common triads in root and
inverted positions when presented as isolated chords.
For both groups of participants, the sequence was,
unsurprisingly: major > minor > diminished > aug-
mented (suspended fourth triads and other chords
containing a semitone or whole-tone dissonance were
not tested). We have reported similar experimental
results that include the suspended fourth chords
(Cook, Fujisawa, & Konaka, 2007). The second type of
empirical data concerns the prevalence of harmonic tri-
ads in a large sample of chords from classical music
(Bach, Handel, Mozart, Beethoven and Mendelssohn),
as collected by Eberlein (1994). It was found that the
relative prevalence of chord types is the same as the
sequence of consonance obtained in laboratory experi-
ments (with some variations among the triad inver-
sions), suggesting that the frequency of usage can be
taken as a proxy for the pleasantness/sonority of these
chords. Again, there is no surprise in the empirical data,
which conform to musical “common sense” about the
sonority of the triads.

Unfortunately, Table 1 indicates that the theoretical
models used to explain the relative consonance of the
intervals of diatonic scales produce results concerning
the total sonority of triads that are dramatically incon-
sistent with experimental results. Although the interval
consonance models have sometimes been heralded as
providing the scientific basis for an explanation of
“Western harmony” (Terhardt, 1974; Parncutt, 1989;
Tramo, Cariani, Delgutte, & Braida, 2001), calculation
of the total consonance (=“sonority,” “tonality”) of tri-
ads directly from the consonance curves produces
anomalous values that are inconsistent with both labo-
ratory measures of perceived consonance and empirical
usage. It should be noted that the interval dissonance
models were designed to explain interval perception
itself, and not presumably to explain triadic sonority. In
fact, with the exception of Parncutt (1989), advocates of
the interval dissonance models have not even reported
the triadic implications of their models. Nonetheless, it
is significant that the various parameters of these mod-
els that provided the best results concerning interval
perception predict that either the augmented or the
suspended fourth triads are more consonant than some
or all of the major or minor triads—contrary to empir-
ical facts. While there are many other musical phenom-
ena that a successful model of harmony perception
might explain, replication of the empirical findings on
triad perception constitutes a minimal threshold for
theoretical models to cross in order to achieve prima
facie plausibility.



A Psychoacoustical Model
of Harmonic Instability

Experimentally, what is found in studies of interval per-
ception is that normal listeners hear a mildly “unpleas-
ant,” “unsettled” dissonance at small intervals of 1-2
semitones and at larger intervals of 10, 11, or 13 semi-
tones. Moreover, dissonance is consistently reported for
an interval of 6 semitones (the tritone) (e.g., Cook,
2002; Kameoka & Kuriyagawa, 1969; Plomp & Levelt,
1965). To account for such experimental results, inter-
val effects have been modeled many times since
Helmholtz (1877/1954). Following the work of Sethares
(1999), the relative dissonance (D) of any two tones can
be defined most simply as:

D =v-B;[exp (=Bx)— exp(=f,x)] (Eq. 1)

where v is the product of the relative amplitudes of the
two tones (set to values of normalized amplitudes
between 0.0 and 1.0), x is the interval size, defined as
x=log( f,/f;), and the parameters are 3, (-0.8) f3,(~1.6),
and f3; (4.0). Parameter f3, specifies the interval of max-
imal dissonance (0.8 being just less than one semitone)
and parameter 3, specifies the steepness of the fall from
maximal dissonance. The variables f, and f, are the fre-
quencies of the two tones (in Hertz). More complex
models have been advocated by Plomp & Levelt (1965),
Kameoka & Kuriyagawa (1969), Terhardt (1974), Parncutt
(1989), and Tramo et al. (2001), but the results are quali-
tatively similar to those obtained by Sethares (1999). The
dissonance model curve is shown in Figure 1A; the total
dissonance of two tones plus their upper partials can be
obtained by applying Eq. 1 to all pairs of partials and
then summing the dissonance (Figure 1B).
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The remarkable result of such modeling is that, sim-
ply by including the first few upper partials for each of
the two FOs, the theoretical curves (Figure 1B) gradually
come to resemble the experimental curve. In other
words, a very simple model devised to explain the rela-
tive dissonance of 1-2 semitone intervals (Plomp &
Levelt, 1965; Figure 1A) predicts that intervals of 12 and
7 semitones are the most consonant. These are the two
intervals—an octave and a fifth—that are used in virtu-
ally every musical tradition and are heard by all normal
listeners as consonant, “pleasant” intervals. Somewhat
less clearly (and dependent on the parameters of the dis-
sonance model and the relative amplitude of the upper
partials), small decreases in dissonance are predicted at
(or near to) many of the intervals of the pentatonic and
diatonic scales (3,4, 5, 7,9 and 12 semitones; Figure 1B).
Similarly, the relatively strong dissonance at intervals of
6, 10, 11 and 13 semitones also is explained as a conse-
quence of small interval effects among upper partials.
These theoretical results have been justifiably celebrated
as a triumph of reductionist science and provide strong
support for the psychoacoustical approach advocated by
Helmbholtz (1877/1954).

It should be noted, however, that the locations of the
consonant intervals in Figure 1B do not correspond to
any known musical scale: to obtain a scale that is actually
used, notes need to be added, subtracted and/or slightly
retuned. The fact that physical acoustics does not
uniquely produce real scales, much less the Western dia-
tonic scales or the 12-equitempered tones of the piano
keyboard, indicates that some form of human manipula-
tion must be included to establish a musical tradition. In
this regard, Leonard Bernstein’s (1976) famous declara-
tion that the “physical universe” has provided us with
diatonic music is clearly stating the case too strongly. The
physical universe provides some nonarbitrary, acoustical
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FIGURE 1. (A) The dissonance model curve of Eg. 1. (B) The more complex dissonance curves obtained from calculations including the effects of 1-6
partials. The amplitudes of the partials are assumed to decrease as 1/n. Note the decreases in total dissonance near to many of the intervals of the dia-
tonic scales. (C) The tension model curve of Eqg. 2. The effects of upper partials on the tension curve are illustrated on the “triadic grid” (Figure 6).
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raw materials, but the human mind can and does assem-
ble the raw materials in various ways.

Despite the successes of the interval dissonance mod-
els, the fact that the summation of interval consonance
does not accurately predict triadic sonority (Table 1)
has led us to include a second factor (for details of the
psychoacoustical model, see Cook, 2001, 2002; Cook &
Fujisawa, 2006; Cook & Hayashi, 2008; Cook, Fujisawa,
& Konaka, 2007). The second factor is what we refer to
as the “tension” inherent to any 3-tone combination, as
calculated from the relative size of its intervals.
Specifically, a tension value (T) is obtained from each
triplet combination of partials from the three funda-
mental tones, as follows:

oo 7]

where Vv is again the product of the relative amplitudes
of the three partials (each set to 0.0-1.0), and o (=0.6)
is a parameter that determines the steepness of the fall
from maximal tension; x and y are, respectively, the
lower and upper of the two intervals in each tone
triplet, defined as x =log( f,/f;) and y =log( f;/f,), where
the frequencies of the three partials are f; < f, < f; (in
Hertz). The theoretical tension curve is as shown in
Figure 1C. Similar to application of Eq. 1 for modeling
interval perception, application of Eq. 2 to triad per-
ception is made for every triadic combination of par-
tials (see The Tension of Triads section, below).

The proposed tension factor is essentially formaliza-
tion of the idea of “intervallic equidistance,” as described
by Leonard Meyer (1956). He noted that: “If the vertical
[pitch] organization is undifferentiated as to intervallic
distance, then there can be no focal point around which
organization can take place . .. [Such chords] have no
root and no shape and hence no tendency.” (p. 166) and
that “The . . . power of chromaticism arises . . . because
uniformity of progression, if persistent, tends . . . to cre-
ate ambiguity and hence affective tension. Moreover,
ambiguity leads, particularly in the realm of harmonic
progression, to a general tonal instability.” (p. 218)

Assuming that “tension” is a consequence of the
structure of 3-tone combinations and is distinct from
2-tone interval dissonance, a theoretical value for the
overall perceptual “instability” of chords can be
obtained if both the dissonance among tone pairs and
the tension among tone triplets are added together.
That is, the total instability (I) can be defined as the
weighted sum of dissonance (Eq. 1) and tension (Eq. 2):

(Eq. 3)

(Eq.2)

I=D+6T

where 6 (=0.2) reduces the contribution of the tension
component relative to the dissonance component. This
parameter means that interval effects in the model are
perceptually five-fold stronger than the triadic effects.
The total instability scores can be used for the rank
ordering of the “sonority” of the triads (Table 1, col-
umn C&F). It is seen that there is approximate agree-
ment with the empirical sonority scores. Those
numerical results suggest that the resolved/unresolved
character of triads (“harmonic stability”) has a
straightforward psychoacoustical basis that is quite dis-
tinct from conventional arguments based solely on the
summation of interval dissonance. The musical signifi-
cance of this model will be discussed below.

Implications of the Model

From what is known about the perception of both iso-
lated tones and intervals, it can be expected that the per-
ception of chords consisting of three or more tones also
will be influenced by the number and strength of upper
partials. Such effects will be considered in detail below,
but the first topic in understanding harmony is the spac-
ing among the FOs themselves. Similar to the phenome-
na of musical intervals, when a 3-tone chord is sounded,
the frequencies with the greatest amplitude are usually
those of the three distinct notes that are played with the
fingers and that are specified in the musical score. The
higher harmonics tag along for free and give the chord a
depth and complexity that might be called its overall
“sonority” (the effects of which are discussed below).
The set of all possible combinations of three tones can
be conveniently represented on a “triadic grid,” as shown
in Figure 2. The vertical axis represents the lower inter-
val and the horizontal axis represents the upper interval,
so that the major chord in root position, for example,
has grid position 4-3; inverted major chords are located
at positions 3-5 and 5-4. The minor chords are found at
grid positions 3-4, 4-5, and 5-3. (Note that different tun-
ing systems—Pythagorean, just, mean-tone, etc.—
would imply small shifts of the vertical and horizontal
lines of the grid, but will not be discussed here.)
Although still recognizably major or minor, the
sonority of the major and minor triads in their various
inversions and when played over one or two octaves dif-
fers somewhat and their musical usages also differ, so
we must take note of their interval substructure. For
this purpose, larger grids of the same kind will be used
to illustrate the computational results of the psychoa-
coustical model. As shown below, the merit of mapping
acoustical properties onto the triadic grid is that the
relative dissonance (tension, instability or modality) of
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FIGURE 2. A small triadic grid showing the locations of the most familiar major (Mo, M;, M) and minor (my, m;, m;) triads in their three inversions.
The interval substructure of these triads is specified by their location at the intersection of lines indicating intervals of 3, 4 or 5 semitones. Examples
of these chords in the key of C and their interval structures are also shown.

a large set of 3-tone chords can be viewed simultane-
ously. Moreover, changes in such values that occur at
intervals of less than one semitone (10 cents in the pres-
ent calculations) also can be visualized.

Clearly, the triadic grid is not a part of traditional har-
mony theory. Although traditional theory is arguably a
coherent, self-consistent description of harmonic phe-
nomena, it is a conceptual system that is not built on the
foundations of acoustical physics. For this reason, ter-
minology from music theory will be avoided in so far as
possible in the present discussion and all chords will be
described in terms of their acoustical (semitone) sub-
structure. If the properties of triadic harmonies can be
explained successfully in terms of psychoacoustics, then,
in principle, it should be possible to reconstruct other
aspects of traditional harmony theory on that basis. The
present essay is intended as a first step in that direction.

Among the many possible triads that can be specified
on the grid, the major and minor triads are the chords
that provide the harmonic framework for the vast
majority of Western classical and popular music; they
are used again and again—either as triads or as triads
with repetition of the triadic pitches an octave higher or
lower. Other grid locations include triads of varying
utility and beauty, as well as many chords that are sim-
ply avoided in most types of music. Whatever our sub-
jective evaluation of the sonority of these chords,
however, the chords themselves have certain structural
properties that can be described objectively in terms of
the spacing of the FOs and their partial components.

For the present purposes, only those triads that can be
played over one or two octaves (as illustrated on grids
with the axes running from 0 to 13 semitones, Figure 3)

will be considered. Any recognizable triad—and many
unrecognizable ones as well—can be specified on the
grid as the point of intersection of the vertical and hor-
izontal lines indicating semitone steps. In addition to
the major and minor chords, there are of course other
chords with established names in harmony theory,
labels for which are also shown in Figure 3; it is seen
that there are two clusters on the grid where the most
common chords lie. In subsequent displays of the tri-
adic grid, psychoacoustical properties will be color-
coded and mapped onto the grids using the dimensions
of dissonance, tension, instability and modality. Model
calculations for dissonance, tension and instability pro-
duce non-negative real values, whereas modality can be
zero, positive or negative (Figure 3B).

Given the known F0 interval structure of the triads,
what can be said about their relative sonority? How can
the stability or instability of the triads—their resolved or
unresolved character—be explained? Once these ques-
tions have been answered in relation to dissonance, ten-
sion and instability, it will then be possible to ask how
the commonly perceived positive and negative emotional
valence of the major and minor chords might also be
accounted for on a psychoacoustical basis.

The Dissonance of Triads

Since chords can be considered as the sum of their
intervals, the obvious first step in trying to explain their
overall sonority is to add up the dissonance of the inter-
vals to obtain a “total dissonance” score. The inclusion
of the dissonance among all pairs of upper partials will
of course make the calculation of total dissonance
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FIGURE 3. (A) A larger triadic grid showing the locations of the major, minor, diminished, augmented, and suspended fourth triads in their various
inversions when played over 1-2 octaves. (B) Calculated acoustical features of the triads can then be plotted along a third dimension. The locations of
the triads on the grid remain fixed, but the strengths of the acoustical features change with the inclusion of upper partials (see Figures 4, 6, 7 and 9).

somewhat complex, but with or without upper partials
the question is essentially: Can interval consonance/dis-
sonance explain the sonority of chords?

Figure 4A illustrates the summed dissonance of the
intervals (calculated with the model in Figure 1A) when
only the FOs are considered. It can be seen that there are

is one or two semitones in size. The remainder of the
triadic grid is found to be a region of low dissonance.
Figure 4B-D shows dissonance maps that include upper
partials in the calculations. The fine-structure of the
maps gradually gets more complicated as upper partials
are added, but the general pattern remains approxi-

two strips of relatively strong dissonance if either interval mately the same. That is, there are red peaks of strong
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FIGURE 4. The total dissonance for all triads containing intervals of 0-13 semitones. The stipled regions (blue regions, in the online version) have
low dissonance, whereas nonstipled regions (red regions online) indicate high dissonance. (A) Results when only the fundamental frequencies (FOs)
are included in the calculations. When either interval is less than two semitones, dissonance is present, but this falls off rapidly so that all of the com-
mon triads are located in or at the edge of a broad “valley of consonance.” (B) The dissonance map obtained when both the FO and F1 are included
in the calculations. The two ridges of dissonance along the x- and y-axes now have more complex structure and the “valley of consonance” is divided
into two regions. (C & D) The dissonance maps when FO-F2 and FO-F3 are considered. The valleys of consonance show more complex structure, but
remain as regions of relatively low dissonance bordered by mountain ranges of high dissonance. Solely on the basis of ““total dissonance,” a clear dis-
tinction cannot be made between the major and minor chords or between the resolved (M, m) and unresolved (d, A, S) chords. Note that there are
several vertical, horizontal and diagonal strips of low dissonance—corresponding to regions where intervals of 12 semitones arise. All of the color-
coded triadic grids are screenshots of the “Seeing Harmony" software, available at: www.res.kutc.kansai-u.ac.jp/~cook. (For a color version of this
figure, please see the digital PDF at www.musicperception.net)



dissonance (when either of the intervals is small) and
blue expanses of relatively strong consonance (where all
of the common triads lie). Therefore, although we have
good reason to think that small intervals make chords
less stable because of dissonance effects, calculation of
the total dissonance of triads does not indicate why
people easily distinguish between the resolved (major
and minor) chords and the unresolved (diminished,
augmented, and suspended fourth) chords (e.g., Cook
etal., 2007; Roberts, 1986). Judging solely from the total
dissonance among the partials, all of the common tri-
ads are rather similar (Figure 4).

This “negative result”—i.e., the failure to explain the
perceptual differences among the triads on the basis of
dissonance and, indeed, the many counterintuitive
results summarized in Table 1—has led some com-
mentators to conclude that, in addition to so-called
“sensory dissonance,” the learning of musical tradi-
tions and habituation to the “acceptable” tone combi-
nations in specific musical cultures must be invoked to
account for the perceived sonority of the triads. In
other words, in addition to the acoustical dissonance
perceived by all human beings, there is also “musical
dissonance” or “cultural dissonance” (Parncutt, 1989,
pp. 56-60) that is culture-dependent. In what has
become the conventional view of music perception,
psychoacoustics is said to play a role up to and includ-
ing 2-tone combinations, but more complex pitch phe-
nomena are essentially “learned.” (For example, “It
may even be that acclimatization to a convention can
completely override [the] acoustic facts,” Ball, 2008;
“Our emotional response to particular scales or chords
seems likely to be acquired from exposure to a partic-
ular culture,” McDermott, 2008; “The objective organ-
ization of sounds is only loosely related to how minds
interpret those sounds,” Huron, 2008; “Scale and har-
monic structures depend on learning,” Trainor, 2008).
Despite the apparent popularity of such a view, how-
ever, it is instructive to examine the 3-tone structure of
the triads before we conclude that culture trumps
acoustics.
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The Tension of Triads

The first topic in harmony perception beyond 2-tone
effects is the 3-tone configuration of the triads.
Whereas the structural question underlying interval
perception was simply how close are each pair of tones
(partials) to one another, the structural feature of the
triads that contributes to their harmonic tension is the
symmetry/asymmetry of triplets of partials (Figure
1C). The symmetry (=“intervallic equidistance”) of
certain unresolved chords is of course well-known: (i)
the diminished chord in root position (3-3 semitone
structure), (ii) the augmented chord (4-4), and (iii) the
so-called suspended fourth chord in second inversion
(5-5). These triads evoke a sense of instability that is
perceptually evident to both musicians and nonmusi-
cians (Roberts, 1986), and is consistently found in lab-
oratory experiments with people from the East and
West (Cook, 2002). Traditional harmony theory
explains their unsettled character in terms of the
absence of the interval of a fifth, but Meyer’s (1956)
alternative explanation in terms of the Gestalt percep-
tion of “symmetrical” acoustical structures provides the
possibility of quantitative evaluation (Eq. 2).

The idea that intervallic equidistance leads to tension
seems to apply to the three symmetrical chords men-
tioned above, but what about the various inversions of
those chords? Except for the augmented chord (which
retains the same interval structure in its inversions),
inversions of the diminished (3-6 & 6-3) and suspended
fourth (2-5 & 5-2) chords—all of which have a notably
unsettled, “tense” character—have unequal intervals. So
does Meyer’s (1956) argument break down already with
these simple counterexamples? The answer is that, if the
upper partials are brought into consideration, then an
abundance of intervallic equidistance is found in all of
the unresolved triads (diminished, augmented, and sus-
pended fourth) in all of their inversions, while equal
intervals are not found in any of the major and minor
triads. Figure 5 illustrates this by showing these triads
together with the first set of upper partials.

3 5 4 4 5 15 3 3
4 3 1 S L 3 :l 4 Ir 5 1
5 4 3 3 3 4
3 5 4 4 5 3 3
4 3 5 3 4 5 3,
root Ist 2nd root Ist 2nd  root Ist 2nd root Ist 2nd root
Major Minor Diminished Suspended Fourth Augmented

FIGURE 5. The interval substructure of the common triads with the first set of upper partials also shown. Interval sizes in semitones are indicated
by small integers. None of the major and minor chords, but all of the diminished, augmented, and suspended fourth chords show repeating intervals

of the same size (circled).
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FIGURE 6. The theoretical “tension” of triads. (A) When only the FO is considered, tension is found along a diagonal strip due to the presence of
two intervals of the same size. The remainder of the grid corresponds to regions of low tension (stipled and red in the online version). This effect can
explain the unsettled character of the augmented chord (A), one of the diminished chords, and one of the suspended fourth chords, but leaves the
perceptual tension of other unresolved triads (d, S) unexplained. (B) The theoretical “tension” of triads when both FO and F1 effects are considered.
The unsettled tensionof all inversions of the diminished, augmented, and suspended fourth triads is predicted (unstipled or red regions). The aug-
mented chords at both locations show the highest tension. (C & D) More complex tension maps obtained when FO-F2 and FO-F3 are included in the
calculations. All of the tension chords (d, A, S) are located on the tension strips, while the major and minor triads (M, m) lie in regions of relatively

low tension (blue or stipled). (For a color version of this figure, please see the digital PDF at www.musicperception.net)

Depiction of the first set of upper partials of the tri-
ads in musical notation already distinguishes between
the resolved and unresolved triads, but the generality of
the tension effect is more easily understood in the
acoustical depiction shown on the triadic grids.
Specifically, if the Gaussian curve (Figure 1C) is used to
model the tension effect, maximal tension is obtained
when the difference in the size of the two intervals is
zero; when the symmetry is broken and the intervals are
unequal, the tension is reduced. Because the results of
the tension calculations differ depending upon how
many of the upper partials are included, several “ten-
sion maps” are shown in Figure 6.

As was the case with the dissonance maps, the tension
maps gradually become more complex when more
upper partials are included. It is noteworthy, however,
that, with the addition of only the first set of upper par-
tials (Figure 6B), oblique lines indicating higher tension
fall on all interval combinations that correspond to the
augmented, diminished, and suspended fourth triads in
all of their inversions. Note that the major and minor
triads lie at locations just off of the high-tension strips.

The Stability/Instability of Triads
The success of the tension calculations in indicating

that the diminished, augmented, and suspended fourth
triads have high tension—in all of their inversions and

when played over one or two octaves—suggests that the
total “harmonic instability” of 3-tone combinations is a
consequence of two independent acoustical factors.
The first is a 2-tone effect—interval dissonance (“sen-
sory dissonance”)—and has been acknowledged to be
an important part of music perception at least since
Helmbholtz (1877/1954). The second factor is triadic
tension—and is explicitly a 3-tone effect (Meyer, 1956).

Computational results for the overall stability/insta-
bility of triads are shown in Figure 7. As was the case for
the maps of both dissonance and tension, the absolute
values of “instability” change as upper partials are
added, but regions of relative stability (low instability)
are found for the major and minor chords, in all of
their inversions and when played over one or two
octaves. The unresolved tension chords are located at
regions of slightly greater instability surrounding the
major and minor chords (Figure 7B-D). Moreover, by
combining the dissonance and tension effects into an
overall “instability” score, it is found that the experi-
mental sequence of relative stability (major > minor >
diminished = suspended fourth > augmented) is repro-
duced (column C&EFE, Table 1). The obvious conclusion
to draw is that there is a straightforward acoustical basis
for the perceptual stability of the major and minor
chords. As shown in Table 1, none of the well-known
dissonance models achieves even this modest level of
agreement with perceptual findings.
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FIGURE 7. The instability maps. (A) When only FO is included in the calculations, many of the unresolved chords are located in regions of high sta-
bility (stipled or blue in the online version). When upper partials are included in calculations (FO-F1, B: FO-F2, C: FO-F3, D), only the major (M) and
minor (m) triads remain in regions of relative stability. The unresolved tension chords (d, A, S) lie in surrounding regions of greater instability (non-
stipled or red). (For a color version of this figure, please see the digital PDF at www.musicperception.net)

What the instability calculations imply about the his-
tory of Western diatonic music is that the musicians of
the 14th century who first employed 3-tone chords had
become sensitive to the symmetry/asymmetry in the
acoustical patterns of 3-tone configurations. Where
their Medieval predecessors had been enthralled by
lower-level interval effects, Renaissance musicians
became more interested in the configuration of poly-
phonic chords and less interested in the “perfection” of
the various consonant intervals. The relative contribu-
tion of dyadic dissonance and triadic tension (“sensory”
and “musical” dissonance) remains an issue in music
perception today, but it is a misunderstanding to main-
tain that either effect alone explains musical sonority.
When music employs intervals, their “perfect” tuning is
important, but when chords containing three or more
simultaneous tones are used, then the interval effects
become secondary, and the tuning of the chord as a
chord (i.e., relative interval size) becomes the more
salient perceptual phenomenon. Of course, if there is a
starkly dissonant semitone interval in a triad, the insta-
bility caused by the dissonance will be the most salient
feature of the chord. But when the intervals in a triad
are not overwhelmingly dissonant, the relative size of
the neighboring intervals, not the location of the tones
relative to the tonic, becomes more salient, and the phe-
nomenon of harmony itself dominates.

Of historical interest is the fact that, while
Renaissance musicians were busy inventing new kinds
of polyphonic music that employed primarily asym-
metrical 3-tone configurations, Renaissance theorists

remained obsessed with the effects of intervals—and
devoted their theoretical energies to justifying why 3-
and 4-tone chords and chord progressions are “conso-
nant” or “dissonant” due to the use of certain intervals
(e.g., Rameau, 1722/1971). Rather than address triadic
harmony on its own terms as a “3-tone phenomenon,”
the theorists used the theoretical framework that had
sufficed for discussion of scales and intervals, i.e., the
relative “perfection” of tone dyads. Rameau
(1722/1971), for example, maintained that, “the power
of the major and minor chords is obtained by the use of
the major or minor third. . .. Thus, we can attribute the
power of harmony to these intervals” (p. 123). This
overemphasis on intervals to the complete exclusion of
3-tone psychophysics remains a problem in more mod-
ern attempts at explaining harmony perception (dis-
cussed in Cook, 2002; Cook & Fujisawa, 2006; Cook et
al., 2007; Cook & Hayashi, 2008).

Harmonic Modality

The previous sections concerning the dissonance, ten-
sion, and instability of chords suggest that there are
acoustical grounds for considering the major and
minor triads to be musically more sonorous than other
triads. Undoubtedly, the learning of musical styles and
habituation to the different kinds of harmonies, scales
and tuning systems in various musical traditions also
influence how pitch combinations are perceived. But
whatever additional effects are essentially the result of
culture, there are clearly structural features of 3-tone
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chords that contribute to their overall stability and that
have less to do with culture than with acoustics.

All of the major and minor triads are rather stable
chords—because they lie in broad valleys of low disso-
nance and, moreover, in smaller pockets of low tension.
But, if interval dissonance and triad tension were the
only factors determining harmonic sonority, we would
expect all of the major and minor chords to sound
rather similar—all being small variations on the theme
of “triadic stability”. That is perceptually not the case,
and the musical labels “major” and “minor” were invented
presumably because there was something affectively dif-
ferent about these two classes of sonorous chords.

Empirically, the difference between major and minor
harmonies is recognized by musicians and nonmusi-
cians, adults and children as young as 4-7 years
(Kastner & Crowder, 1990), and peoples from the West,
the Indian subcontinent (Bharucha, 1993), and the Far
East—despite vastly different musical experience.
Typical results of three such experiments in our labora-
tory testing Japanese undergraduates are shown in
Figure 8A.

So, what is the structural feature of these chords that
allows people to so unambiguously distinguish
between the three major chords and the three minor
chords? The textbook explanation of major and minor
chords normally is framed in terms of the major and
minor scales, and the roles of the intervals of a major
or minor third in relation to the tonic, in accordance with
traditional harmony theory. As accurate as that des-
cription may be, the acoustical factors that determine
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harmonic perceptions have not previously been identi-
fied—and the perception of major and minor modality
is often attributed to learned familiarity with the
“Western idiom.” Indeed, there is even a longstanding
contention that the perception of major and minor
may be little more than an arbitrary, culture-specific
“habit” with no claim to universality—a local custom
that has insidiously infiltrated to all parts of the musi-
cal world for no reason other than Eurocentric hege-
mony! On the contrary, however, if the perceived
stability of diatonic harmonies can be deduced solely
from the acoustical structure of 3-tone chords, then
perhaps the perception of major and minor also has an
acoustical basis.

A Psychoacoustical Model of Modality

From a state of “intervallic equivalence,” there are two
directions of pitch movement that can eliminate the
structural symmetry and thereby reduce the perceptu-
al tension (Figure 1C). As soon as the two intervals in
a (nondissonant) triad differ by one semitone, the
tension disappears—and the asymmetrical chord
“resolves.” Since the only directions available for resolu-
tion from the tension of intervallic equivalence corre-
spond to major and minor harmonies (lower interval >
upper interval, or vice versa), it is possible to reformu-
late the tension model such that moving away from ten-
sion will result in a quantitative measure of the degree
of “majorishness” or “minorishness” of any 3-tone
chord (Cook, Fujisawa, & Takami, 2006).
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FIGURE 8. (A) The results of three experiments in which 20 (18 or 66) undergraduate nonmusicians evaluated the bright/dark (happy/sad or
strong/weak) quality of 72 (24 or 12) isolated major (MO, M1, M2) and minor (mO, m1, m2) chords presented in random (pseudorandom or fixed) order in
various keys and at various pitch heights. Indications of differences among the inversions of these chords are also of interest, but, in any case, the affec-
tive distinction between major and minor is clear. The thick solid line shows predictions of the theoretical model (Cook & Fujisawa, 2006). (B) The theo-
retical modality curve. The difference in the magnitude of the intervals (lower minus upper) of a triad will determine its positive (major, b) or negative
(minor, a) modality. Note that, for comparison with empirical results, the effects of the upper partials must be plotted on the triadic grids (Figure 9).



The degree of harmonic “tension” was calculated
using the “difference of intervals” in any triad of par-
tials (Eq. 2, Figure 1C), but it is also possible to calcu-
late the positive/negative valence of the major and
minor chords in relation to interval size (Eq. 4, Figure
8B). When the lower interval is larger than the upper
interval, a positive modality score, typical of major
chords, is obtained, whereas a smaller interval below a
larger interval gives a negative value, typical of minor
chords. Specifically, modality (M) is defined as:

(Eq. 4)

where v again expresses the product of the amplitudes of
the three partials (0.0-1.0), x and y are again the lower
and upper intervals, respectively, and the parameter, &,
1.6 is set to give a positive modality score of 1.0 for the
major chord in root position and a negative modality
score of —1.0 for the minor chord in root position.
Similar to calculation of the total tension of tone combi-
nations, calculation of the total modality (M) for any
triad with upper partials requires application of Eq. 4 to
all triplet combinations of the partials of the three tones.
Being based on the difference of interval size, the modal-
ity score is mathematically related to the tension score,
such that a tension score of 1.0 necessarily implies a
modality score of 0.0. The significance of the modality
calculation, however, is that, in producing both positive
and negative values, it can be used to distinguish
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between the positive and negative valences of major and
minor chords.

Implications of the Modality Model

The modality scores obtained when only the FOs of the
three tones are considered are shown on the triadic grid
of Figure 9A. An orange ridge of “major modality” (pos-
itive valence) is seen when the lower interval is one semi-
tone larger than the upper interval—with a blue valley of
“minor modality” (negative valence) running in parallel
below it. The vertical heights (depths) indicate that most
of the resolved major and minor chords have appropri-
ate (positive and negative) modality scores, respectively,
but some are located in (pale yellow and pale blue)
regions with modality scores near to zero—theoretically,
neither major nor minor, which is contrary to what we
know from musical experience (Figure 9A).

When upper partials also are included (Figure 9B-D),
however, the match between the theoretical modality
maps is remarkably consistent with the perceptual facts.
Already with consideration of only the first set of upper
partials, peninsulas of positive modality arise at all
inversions of the major triad, and complementary
troughs of minor modality arise at the minor triads. In
contrast, the tension chords (diminished, augmented,
and suspended fourth) lie exclusively in in-between
regions where there is neither major nor minor modal-
ity (Figure 9B). (Note that the small differences in inter-
val structure implied by various tuning systems would
have only miniscule effects on the overall modality
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FIGURE 9. The modality maps. (A) When only FO is included in the calculations, several of the major and minor chords have modality scores near
to zero. (B) When the first set of upper partials are included, all of the major and minor chords obtain appropriate positive (nonstipled or red) or neg-
ative (stipled or blue) modality scores. (C & D) The modality scores for all major (M) and minor (m) triads remain correct with the addition of further
upper partials, FO-F2 and FO-F3, respectively. (For a color version of this figure, please see the digital PDF at www.musicperception.net)
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TABLE 2. The Relationships Among the Major, Minor, and Tension Chords.

Chord after Lowering One Tone

Chord after Raising One Tone

n-n-d n-d-n d-n-n Tension Chord n-n-u n-u-n u-n-n
3-2 2-4 4-3 3-3 3-4 4-2 2-3
4-3 3-5 5-4 4-4 4-5 5-3 3-4
Interval 5-4 4-6 6-5 5-5 5-6 6-5 A5
Structure 6-5 5-7 7-6 6-6 6-7 7-5 5-6
(in semitone 7-6 6-8 8-7 7-7 7-8 8-6 6-7
units) 5-1 4-3 6-2 5-2 5-3 6-1 4-2
2-4 1-6 3-5 2-5 2-6 3-4 1-5
8-7 7-9 9-8 8-8 8-9 9-7 7-8
9-8 8-10 10-9 9-9 9-10 10-8 8-9
=5 277 4-6 3-6 3=7 4-5 2-6
6-2 5-4 7-3 6-3 6-4 7-2 5-3
n-n-d n-d-n d-n-n n-n-u n-u-n u-n-n
dom?7 dom?7 major dim minor — minor7
major major major aug minor minor minor
Labels major dom7 — sus4 — — minor
from — — — tritones — — —
Music — dom?7 major sus4 minor — —
Theory — major dom?7 sus4 minor — —
(alternatives dom?7 — major sus4 — minor —
are possible) major major major aug minor minor minor
major dom7 dom7 dim minor7 minor minor
major dom7 dom7 dim minor7 minor —
major major dom?7 dim — minor7 minor

Note: The cells shaded in lightest grey are all tension triads. The dark grey cells are all major-related (major or dominant-seventh) triads and the mid-tone grey cells are all
minor-related (minor or minor-seventh) triads. The unshaded cells do not have common labels from harmony theory; n: no change; d: downward semitone change; u:

upward semitone change.

scores of these triads.) The addition of further upper
partials makes the modality maps more complex
(Figure 9C and D), but the major and minor triads con-
sistently show positive and negative modality scores,
respectively, and the tension chords have modality
scores near to zero.

The conclusion that can be drawn from the modality
calculations is that, among the upper partials of all of the
major chords, there is a predominance of triadic struc-
tures where the lower interval is one semitone larger than
the upper interval. Minor chords show the opposite
structural feature. This regularity of the major and
minor chords is already apparent when the FOs and F1s
of these chords are written in musical notation (Figure 5).
The simplicity of this structural feature should come as a
surprise to anyone familiar with the complexities of tra-
ditional harmony theory, for the conventional view
requires the entire edifice of Western music theory—
with special consideration of the roles of major and
minor thirds in relation to the tonic, and therefore an
understanding of key and the use of scales to establish

key. Although traditional harmony theory successfully
describes modality through such complex arguments,
the simplicity of the acoustical explanation suggests that
there may be a more direct route to understanding.
Given the structural features that contribute to ten-
sion and modality, what can be said about the dynamic
relationship between the modal (major and minor)
chords and the amodal (tension) chords? This topic is
most easily understood in relation to the augmented
chord because all of its nearest neighbors on the triadic
grid are major or minor. Starting with the unresolved
tension of the augmented chord, lowering or raising
any of its tones by one semitone will transform its
unstable tension into the resolved stability of, respec-
tively, a major or minor chord. In fact, as shown in
Table 2, a notable regularity of diatonic harmony in
general is that pitch changes in any of the tension
chords give similar results. Raise any tone, and one pro-
ceeds to a minor (or minor seventh) chord; lower any
tone, and one ends up with a major (or dominant sev-
enth) chord. In other words, given the starting point of
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FIGURE 10. (A) The Cycle of Modes. The plus and minus symbols indi-
cate semitone rises or falls. If chords containing interval dissonances
are avoided, semitone rises lead from tension to minor to major and
back to tension harmonies indefinitely (the solid arrows), whereas semi-
tone falls show the reverse cycle (the open arrows). (B) The traditional
view of the major and minor chords is only part of the cycle.

the tension of intervallic equidistance, the rising or
falling direction of semitone movement determines the
mode of resolution: major (downward) or minor
(upward). Although this simple pattern is a direct con-
sequence of the lawfulness of traditional diatonic har-
mony, it is not discussed in any of the classic texts on
harmony theory because the 3-tone psychoacoustical
feature described here as harmonic tension is not a part
of traditional theory.

The pattern of modality among the triads can be
illustrated succinctly as a Cycle of Modes (Figure 10A).
The traditional view of mode relationships is that the
essential difference between the major and minor
chords is the semitone shift that can transform major
chords into minor chords, and vice versa (Figure 10B).
That view is of course correct, as far as it goes, but
implicitly dismisses all other triads as irrelevant “disso-
nances”—which, technically, is not correct.

By bringing the (unresolved, but not dissonant!)
diminished, augmented, and suspended fourth chords
into a broader theory of harmony;, it is clear that there
is an endless cycle of affective modality that can be
traversed by raising or lowering triad tones one at a
time. Provided that chords containing dissonances are
avoided, the cycling will entail repeated transitions
from tension-to-major-to-minor and back to tension
(with falling tones) or transitions from tension-to-
minor-to-major-to-tension (with rising tones). An
example is shown in Figure 11.
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The Affective Valence of Major and Minor

What has not yet been addressed, however, is why the
two modes have their characteristic affective valences.
Is it nothing more than a musical custom, a habit, or an
entrenched bias for hearing the major chord as some-
how strong, bright and positive, and the minor chord as
weak, dark and negative—but for no good reason,
other than that diatonic music since the Renaissance
has always been that way? Could it as easily be reversed?

In discussing the affective valence of chords, musi-
cians rightly object to simple “happy/sad” characteriza-
tions of the major and minor triads for the very good
reason that many other factors also contribute to the
affect in real music (as distinct from chords played in
the psychology laboratory). Perhaps a few major chords
to celebrate a sports victory or a few minor chords to
lament a lost love can be played effectively as a relent-
less sequence of chords in the same major or minor
mode, but music that musicians would describe as
interesting, subtle, nuanced, and ultimately effective as
music normally includes both major and minor chords,
many moments of tension and dissonance, and of
course the effects of rhythm, tempo and lyrics. Such
music is purposely constructed to elicit an affective
atmosphere with twists-and-turns, intimations of pos-
itive or negative affect, and the highlighting of internal
contradictions before inevitably resolving to the affect
of unambiguous major or minor harmonies. Music
without tonal resolution can still be interesting—from
the trance music of Bali to the geometrical intellectu-
alisms of Schoenberg and Webern—but most music,
including modern classical and jazz and virtually all of
popular music, uses specifically the major and minor
chords to resolve tensions and produce moments of
release and composure.

The emotional response to major and minor music has
been evaluated experimentally in many previous studies
(see, Scherer, 1995, and Gabrielsson & Juslin, 2003, for
reviews) and is often discussed in the framework of clas-
sical Western music (Cooke, 1959; Scruton, 1997). The
emotional effects of mode can of course be suppressed

(3-6) (4-4)

3 Tension \_ B Tension
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FIGURE 11. Possible transitions among the modes with rises or falls of one semitone in each triad. Many alternatives are possible, and the sequence
extends indefinitely. The numbers in parentheses indicate the size of the intervals in each triad, and the + and — symbols indicate semitone steps.
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and even reversed through rhythms, timbres and lyrics
that tell a different story, but a direct comparison of
major and minor triads consistently points in the direc-
tion of positive versus negative affect (Kastner &
Crowder, 1990). Whatever its origins, that difference is
a crucial element of diatonic music because the positive
and negative affect associated with major and minor
harmonies are focal points where music has meaning:
We “feel” major and minor chords at an emotional level
that is clearly more significant than the unfocused,
meandering of birdsong, the chortle of splashing water
in a mountain stream or the harmless whistling of chil-
dren trying to keep the ghosts away! Individual tones
may be pure and isolated intervals may be consonant,
but without harmonic focus such auditory candy does
not rise to the level of art.

For an explanation of the acoustical origins of the
affective response to harmony, the Cycle of Modes can
be put to good use. Of the three types of harmonies that
do not entail interval dissonance, the tension chords are
typically perceived as affectively neutral, inherently
ambiguous “amodal” triads. They certainly elicit the
emotions associated with ambiguity and uncertainty,
and leave the listener in a state of anticipation expect-
ing some sort of resolution, but the tension itself does
not point in the direction of either a positive or nega-
tive, happy or sad, or weak or strong resolution. Tension
is an unresolved starting point from which we await
progression to the settled affect of major or minor
(Cooke, 1959, p. 64) through some sort of tonal change.

As summarized in Table 2 and Figure 10, it is an
empirical fact of diatonic music that (if dissonant
chords are avoided) semitone rises in pitch from such
affective ambiguity imply the negative affect of the
minor mode, whereas semitone falls in pitch from the
tension chords imply the positive affect of the major
mode (and never the contrary). Of course, multiple
pitch rises and falls can move any triad from one mode
to any other mode, but the nearest “local” phenomenon
in triadic pitch space from a stance of unresolved neu-
trality to one of emotionality involves semitone steps
from tension to major or minor resolution. The sim-
plest formulation of the old puzzle of harmonic modal-
ity is therefore to ask why the human ear attaches
emotional significance to such changes in auditory fre-
quency? From a harmonic state of affective ambiguity,
why do pitch rises lead to negative emotional valence
and pitch falls lead to positive valence (Figure 10A)?

Surprisingly, the answer to this question is already
known in fields unrelated to music and referred to as
the “frequency code.” From the study of animal vocal-
izations, it is known that there is a strong tendency for

animals to signal their strength, aggression, and territo-
rial dominance using vocalizations with a low and/or
falling pitch and, conversely, to signal weakness, defeat,
and submission using a high and/or rising pitch
(Morton, 1977). Concrete examples of the frequency
code are familiar to most people from the low-pitched
growling of aggressive dogs and the high-pitched yelp
of injured or retreating dogs, but it is known to be true
for species as diverse as gorillas, cats, dogs, elephants,
frogs, horses, and birds— virtually any species that uses
changes in vocal frequency for the purposes of social
communication.

Ohala (1983, 1984, 1994) has been one of the leading
advocates of the idea concerning the inherent “sound
symbolism” of rising or falling pitch. He has noted that:

Animals in competition for some resource attempt to
intimidate their opponent by, among other things, try-
ing to appear as large as possible (because the larger
individuals would have an advantage if, as a last resort,
the matter had to be settled by actual combat). Size (or
apparent size) is primarily conveyed by visual means . . .
As Morton (1977) points out, however, the FO of voice
can also indirectly convey an impression of the size of
the signaler, since FO, other things being equal, is
inversely related to the mass of the vibrating membrane
(vocal cords in mammals, syrinx in birds), which, in
turn, is correlated with overall body mass . . . To give the
impression of being large and dangerous, then, an
antagonist should produce a vocalization as . . . low in
FO as possible. On the other hand, to seem small and
non-threatening, a vocalization which is tone-like and
high in FO is called for . .. Morton’s (1977) analysis,
then, has the advantage that it provides the same moti-
vational basis for the form of these vocalizations as had
previously been given to elements of visual displays, i.e.,
that they convey an impression of the size of the sig-
naler. I will henceforth call this cross-species FO-func-
tion correlation “the frequency code.” (p. 330)

A perceptible increase or decrease in pitch signifies
a change in the vocalizing animal’s assumed social
position. Other behaviors are also used to signal or
establish dominance, but the “frequency code” is the
primary auditory means for affective signaling. While
most other behaviors have species-specific significance,
rising or falling FO has cross-species generality and pro-
found meaning for any animal within earshot, regard-
less of night-time obscurity, visual angle, or jungle
obstructions. A falling FO implies that the vocalizer is
not in retreat, has not backed down from a direct
confrontation, may become a physical threat and has
assumed a stance of social dominance. Conversely, a
rising FO indicates defeat, weakness, submission, an



unwillingness to challenge, and signals the vocalizer’s
acknowledgement of nondominance. As shown by
Morton (1977) and Ohala (1984, 1994), a falling voice
signals strength because—all else being equal—a low
auditory frequency indicates a larger object than a high
frequency. This is as true for vocal cord resonances as
for church bells: large vibrating cavities produce low
sounds, small ones high sounds. As a consequence, this
instinctively understood signal is widely used by many
species as a hopeful ploy to scare away potential rivals
without engaging in actual combat.

There is an extensive and fascinating academic litera-
ture on how and why these FO signals have evolved,
their correlations with facial expressions (smiles are
correlated with higher frequencies) and the related,
inherent “sound symbolism” of vowel sounds [see
Bolinger (1978); Cruttendon (1981); Juslin & Laukka
(2003); Ladd (1996); Levelt (1999); Morton (1977);
Ohala (1983, 1984, 1994); Scherer (1995); Scherer et al.
(2003) for further discussion]. But the important point
in the present context is simply that the pervasive use of
vocal pitch changes by diverse animal species to indi-
cate social status is empirically well-established.

If the “frequency code” were merely a peculiarity of
animal communications, it could possibly be dis-
missed as irrelevant to human behavior in general
and music in particular, but in fact the universality of
such sound symbolism is known to have spilled over
into human languages: Rising and falling voice into-
nations have related, if greatly attenuated, meanings
concerning social status in human interactions.
Across diverse languages, falling pitch is again used to
signal social strength (commands, statements, domi-
nance) and rising pitch to indicate weakness (ques-
tions, politeness, deference and submission): “in both
speech and music, ascending contours convey uncer-
tainty and uneasiness, and descending contours cer-
tainty and stability” (Brown, 2000, p. 289). As argued
most forcefully by Ohala (1983, 1984, 1994), the inher-
ent meaning of pitch rises or falls is one of a very small
number of crosslinguistic constants that have been
found in all human languages. As a consequence,
although we may have no idea what the babbling for-
eigner is trying to communicate, his tone of voice will
clearly indicate whether it is a command or a question—
and whether his assumed social status is one of strength
or weakness.

The most common statement of the frequency code
in linguistics is in relation to the rising auditory fre-
quency used in interrogatives. Although it is possible
to ask questions with a falling tone of voice (usually
carrying some implication of strength or authority
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about the speaker), an inquiry that indicates a lack of
information and a desire for an answer from another
person is most frequently stated with a noticeable rise
in the vocal pitch of the speaker. Since “establishing
dominance” is only one of many aspects of human
communication, rising and falling pitch is only part of
the sound symbolism of speech utterances, but its
crosscultural prevalence demonstrates the importance
of our biological roots— extending even to the realm
of language.

The frequency code as known from both animal com-
munications and human speech can be stated simply as:
Falling pitch signals strength, rising pitch signals weak-
ness. In both cases, the pitch context is provided by the
tonic or “natural frequency” of the individual’s voice, so
that the meaning of the frequency code is apparent sim-
ply from the direction of rising or falling pitch. In the
context of diatonic music, however, the “meaning” of
pitch changes can be deciphered only within a specific
musical context. Musical key and the location of the
tonic are not “givens,” but must be established within the
context of the ongoing music. Normally, that is done
gradually—sometimes with intended ambiguities and
delays, but nearly always evolving toward a definite key
within which the listener can appreciate the musical sig-
nificance of any pitch movement.

The question concerning the affective valence of dia-
tonic harmonies then becomes: What is the minimal
musical context from which pitch movement will allow
the listener to hear unambiguous musical meaning? In
diatonic music, the affect of a major or minor key can
be established simply and unambiguously through the
use of a resolved harmonic triad. Since a modal triad
requires a pitch range of at least 7 semitones, a modally
ambiguous triad over a range of 6 (or more) semitones
provides a sufficient context from which a semitone
rise or fall will establish a major or minor key. It is a
simple consequence of the regularities of diatonic har-
mony that, given this minimal context, a semitone rise
can resolve to a minor key and a semitone fall can
resolve to a major key, but not vice versa. Remarkably,
pitch movement from any 3-tone (nondissonant)
combination that is neither inherently major nor
inherently minor shows this same general pattern (see
Table 2).

It is a noteworthy fact that the direction of tonal
movement from the ambivalence of amodal tension to a
major or minor triad is the same as the direction of
pitch changes with inherent affect in animal vocaliza-
tions and language intonation (Figure 12). In the long
history of animal evolution, upward pitch movement
has come to imply the negative affect of social weakness,
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Animal Vocalizations

weakness, defeat,

submission

~ I'normal “tonic”
(neutrality) e
dominance,

Falling Pitch
strength, victory =

Human Languages

assertions, statements

Diatonic Music

politeness, assent, negative affect, despair,
questions sadness

(neutrality) h?;rq;?onr:c (neutrality)
commands, positive affect, joy,

Falling Pitch

happiness

FIGURE 12. The “frequency code” manifests itself in animal calls, language and music. Given an appropriately neutral starting point, rising or falling
pitch has related meanings in all three realms: positive affect with pitch decreases, negative affect with pitch increases. (For a color version of this

figure, please see the digital PDF at www.musicperception.net)

whereas downward pitch movement implies the posi-
tive affect of social strength. It is therefore a plausible
hypothesis that, within the realm of diatonic pitch
space, when a 3-tone combination shifts away from the
unresolved acoustical tension of intervallic equidistance
toward resolution, we inevitably infer an affective
valence from the detection of the direction of tonal
movement: a semitone shift up is weak (submissive,
retreating), a semitone shift down is strong (dominant,
assertive). The fact that we feel anything at all—and do
not experience such harmonic phenomena as cold and
emotionless “information processing”—is indication
that our biological beings have been activated. When
embedded in a richly embroidered musical context, the
emotional response to modal harmony can occur
together with piloerection, lacrimation, tachycardia, or
brachycardia and other indications of autonomic arousal
(Gabrielsson & Juslin, 2003). These are not signs of cool
headed, detached listening, but, on the contrary, indica-
tions of emotional involvement.

The similarity of the binary pattern of affect in
response to pitch changes in all three realms (Figure 12)
suggests an ancient evolutionary history underlying the
common perception of major and minor chords. In this
view, the positive/negative affect of falling/rising musi-
cal pitch is another manifestation of the evolutionary
roots of human behavior in general. Since the frequen-
cy code has previously been identified as a low-level,
universal “code” for signaling social status relations, it
would be parsimonious to argue that the same pitch
phenomena in those realms are at work when human
beings perceive the affect of harmony. Definitive evi-
dence for the commonality of these three phenomena
will probably require brain-imaging indication of the
same cortical regions being involved in various mani-
festations of the frequency code.

The implications of the sound symbolism hypothesis
are complex and far-reaching. Suffice it to say that, even

for music without lyrics and without imitation of the
sounds of nature (i.e., for the inherent meaning of
“absolute music”), music has at least one form of bio-
logical grounding in the use of instinctively understood
pitch movement. In this view, each and every pitch rise
or fall contains a miniscule implication of strength or
weakness among competing animal species. Within the
framework of diatonic music, in which the meandering
of pitch typical of birdsong is replaced by the musical
context known as key, the usage of harmonies again pro-
vides an affective biological grounding in relation to
the neutrality of harmonic tension. In addition to the
various ups-and-downs of melody, whenever 3-tone
combinations produce the ambiguity of intervallic
equidistance, a subsequent fall in pitch conjures up the
biological twinge of “social strength,” whereas a rise sug-
gests “social weakness.” Effective music interweaves
these evolutionarily ancient, instinctively understood
pitch signals with changes in rhythm, timbre, and lyrics,
such that music will virtually never be heard as a state-
ment of victory or defeat, but the grounding to our bio-
logical beings—the faint probes of the autonomic
nervous system that we feel on hearing well-crafted
music—is arguably a consequence of the frequency code
woven into what might otherwise be heard as nothing
more than arid, inherently emotionless changes in audi-
tory frequency.

Conclusion

The perceptual stability/instability and major/minor
modality of triads have clear-cut acoustical foundations
that can be explicated in terms of the 3-tone partial
structure of chords. Precisely how the auditory nervous
system might undertake the 2-tone dissonance and 3-
tone tension/modality calculations and combine them
into musical percepts remains to be studied in terms of
brain activity.



It also remains to be seen how much of the com-
plexity of traditional harmony theory can be reconfig-
ured solely on a psychoacoustical basis. Outstanding
questions include whether or not the empirical evi-
dence on the usage of harmonic cadences in classical
and popular music (Eberlein, 1994; Huron, 2006) can
be explained, whether there are additional acoustical
features of 4- and 5-tone harmonies (Kuusi, 2002)
that are more than the sum of 2- and 3-tone effects,
and of course what the relative effects of exposure,
learning, and training in musical traditions may be.
However those more complex questions may eventu-
ally be answered, it can be said that the core phenom-
ena of diatonic harmony, built from pitch triads, have
an acoustical simplicity that becomes apparent as
soon as we look beyond the inherent limitations of 2-
tone psychophysics.
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